Linear regression for Gamma-Ray spectrum

Cite as: AIP Conference Proceedings **2386**, 080032 (2022); https://doi.org/10.1063/5.0067000 Published Online: 11 January 2022

Inaam H. Khadim and Khalid Hussain Hatif

AIP Author Services

Maximize your publication potential with English language editing and translation services

AIP Conference Proceedings **2386**, 080032 (2022); https://doi.org/10.1063/5.0067000 © 2022 Author(s). 2386, 080032

Linear Regression for Gamma-Ray Spectrum

Inaam H. Khadim^{a)} and Khalid Hussain Hatif^{b)}

Department of Physics, Collage of Science, University of Babylon, Iraq ^{a)} Corresponding author: stud.inaam.hadi@uobabylon.edu.iq ^{b)} sci.khalid.hussain@uobabylon.edu.iq

Keywords: Gamma ray, Scintillation Detector, statistical distribution, language R, T-test.

Abstract: The radiation emitted from nuclear decay is subject to a certain degree of statistical variability. These inherent fluctuations represent an inevitable source of uncertainty in all nuclear measurements and often they can be the predominant source of inaccuracy or error. So we used programming and statistical tests to study the spectrum of the Cesium-137 source. We analyzed the spectrum areas from the total area of the spectrum, photopeak, and others, and found through the analysis that the samples mean do not obey the normal distribution and this was proved by using a T-test. The distribution of the values was observed randomly around the rate by using the linear regression test. and there were few differences between the mean values and the statistical variation of the single assumed random models by using the statistical models.

INTRODUCTION

Nuclear decay is a quantum transition process obeying the statistical laws. so, for any radionuclide, decay time of occurrence is entirely accidental and cannot be expected [1]. It is an important way of understanding the nucleus where the exponential decay of radionuclides as a function time is a cornerstone of nuclear physics and radionuclide metrology [2]. Theoretical derivations of the exponential law can be achieved from probabilistic and quantum mechanical points of view [3].

The nature of statistical radiation resulting from uncertainty in the energy level of the nucleus is unstable and the possibility of the decay of the number of cores within a certain period of time based on the statistical relationship derived by Rutherford and Soddy so, we try use the laws of statistics and statistical distributions software to try to understand the random statistical nature of the dissolution of gamma rays and their interaction with the material. which that three kinds of rays are included during the release process of nuclear decay, i.e., (i) α -ray which has the two-charge number and four mass number. (ii) β -ray, negatively charged electron (iii) gamma -ray which is a very high energy [4]. The unstable nuclei emit radiation from radioactive decay to another less energy nuclear decay, and these decays are obey to the laws of energy and charge conservation. [5]. The exponential decay of radionuclides as a function of time is a cornerstone of nuclear physics and radionuclide metrology. Theoretical derivations of the exponential law can be achieved from probabilistic and quantum mechanical points of view. [1,2]. There is continuing interest in statistical models of multifragmentation which are relevant only for the description of the ultimate stage of the reaction but which, by variation of initial conditions (excitation energy, nucleon density), may exhibit behavior which is characteristic of a phase transition. Generally speaking, these models are highly successful in reproducing results of experiments [5,6].

EXPERIMENTAL METHODS

An electronic counting and analysis system was used by using NaI (Tl) sodium iodide crystal detector with size (3 "x 3") cm was measured based on the high penetration strength of the gamma ray in the materials by , the equipped by a company (Spectrum Tachniques LLC), the nuclear measurements and analysis were done by a computer program called UCS 30.

3rd International Scientific Conference of Alkafeel University (ISCKU 2021) AIP Conf. Proc. 2386, 080032-1–080032-14; https://doi.org/10.1063/5.0067000 Published by AIP Publishing, 978-0-7354-4150-7/\$30.00 The UCS30 Advanced Spectrometer System contain 4096 channel MCA with internal preamplifier, high voltage (0-2048V), upper and lower-level discriminators and multichannel scaling for half-life and decay studied. [7]. Figure (1) shows Nuclear counting NaI(Tl) detector in present study.

FIGURE 1. Nuclear detection system: NaI(Tl).

Radiation detector (NaI(Tl) scintillation counter) is a pulses of light produced in a transparent material by the passage of a particle . [8]. The iodine provides most of the stopping power in sodium iodide. These crystalline scintillators are characterized by high density, high atomic number, its efficiency and the high precision and counting rates are a consequence of the extremely short duration of the light flashes, from about 10-9 to 10-6 sec, that are possible and pulse decay times of approximately (1 μ sec). Scintillation exhibits high efficiency for detection of gamma rays and are capable of handling high count rates. [10].

In general, a scintillation detector consists of:

Scintillator. A scintillator generates photons in response to incident radiation.

Photodetector. A sensitive photodetector which converts the light to electrical signal and electronics to process this signal. [11].

scintillation counters can be used to determine the energy, as well as the number, of the exciting particles (or gamma photons). For gamma spectrometry, the most common detectors include sodium iodide (NaI) scintillation counters and high-purity germanium detectors. [12].

Caesium-137(137 Cs) is a radioactive isotope of cesium is half-life of 30.07 years which is consider as one of the more common fission products by the nuclear fission of 235 U [7]. 94.6% decays by beta emission to a metastable nuclear isomer barium-137m(137m Ba). Metastable barium has a half-life of about 153 seconds, and is responsible for all of the gamma ray emissions in samples of 137 Cs. 137m Ba decays to the ground state by emission of photons having energy 0.662 MeV.[13] A total of 85.1% of 137 Cs decays lead to gamma ray emission in this way. as the Figure (2).

FIGURE 2. ¹³⁷Cs Spectrum, Note the single γ emission at 0.662MeV.

The spectrum produced by the emission of these photons has a single photopeak. Two hundred readings gathered. The cesium spectrum and the collection time of each spectrum is (200 sec) and the distance is (7cm) between the radioactive source and the detector.

Studied the statistical distribution of the irradiated ¹³⁷Cs spectrum regions by using R program and statistical treatments.

The R Programming Environment: is a program that allows the construction of statistical programs and applications. There are many specialized packages that can be protected on the program so that they can be used. These packages cover most statistical methods and in a very specialized and accurate manner. [14]. R is implementing a large of statistical and graphical techniques, including linear and nonlinear modeling, classical statistical tests, time-series analysis, classification. R is easily extensible through functions and extensions, and is noted for its active contributions in terms of packages. Many of R's standard functions are written by R itself [15].

THEORETICAL PART

There is interest in statistical models of multifragmentation w for the description of the ultimate stage of the reaction these. So, may be used to extract the densities and excitation energies which best experimental data sets. The statistical models is two kinds: discrete distribution, such Binomial and the Poisson, and two types of continuous distribution, the Uniform and the Exponential depending on the context, as well as the normal distribution. these types of random distribution may useful as theoretical models of the uncertainty associated with the outcome of a measurement.

Binomial distribution: The number of successes among n repeats of independent trials with a probability p(x) of success in each trial. and the probability of its failure is q = 1-p. The distribution is marked as Binomial (n, p) as Eq.1 [16].

$$E(X) = np , Var(X) = np(1-p)$$
⁽¹⁾

Where E(X) is referred to Expectation value of mean data and Var(X) refers to Variance of the mean data.

Poisson distribution: An approximation to the number of occurrences of a special event, when the expected number of events is λ . The distribution parameter is marked as (λ), as Eq. 2 [17]

$$E(X) = Var(X) = \lambda$$
⁽²⁾

Uniform distribution: Model for a measurement with equally likely outcomes over an interval [a, b]. This distribution shown in Eq. 3 [16].

$$E(X) = (a + b)/2$$
, $Var(X) = (b - a)$ (3)
where, a is the lowest value , b is the highest value

Exponential distribution: Model for times between events. This distribution shown in Eq. 4 [18] $E(X) = 1/\lambda$ & $Var(X) = 1/\lambda^2$ (4)

Where λ is the rate of the distribution

Kolmogorov-Smirnov Test

The hypothesis test is used as Eq.5 [17].

$$H_0: X \sim N(\mu, \sigma^2)$$

Opposite

$$H_1: X \neq N(\mu, \sigma^2) \tag{5}$$

Shapiro-Wilk Test

It also uses the same Eq.5. If P < 05.0 then data are distributed according to a normal distribution [17,18].

RESULTS AND DISCUSSION

In this paper, the total area of the spectrum was calculated (i.e., the area from the first point at the spectrum to the last point), and was also calculated the net area of the photopeak spectrum as shown in Table.1. Where it indicates; Net is the net area peak, Gross: the spectrum confined from the beginning to the end of the peak, FWHM: refer Full Width Half Maximum, P.P: The Centroid of the peak.

Total Are(C/s) Photopeak (C/s) Total Area(C/s) Photopeak (C/s) sample sample F.W F.W F.W F.W Net Cross P.P Net Cross P.P Net Cross P.P Net Cross P.P H.M H.M H.M H.M 187,12 208,621 15 735 77,939 79,578 87 1253 1 203,438 206,978 17 741.6 78,002 79,623 88 1257 101 6 208,84 208,843 15 734 77,270 79,524 90 1254 2 207,549 17 1258 102 191.660 740 77,460 79,627 88 2 77,817 79,409 1254 181,78 208,047 15 735 89 3 197,983 207,657 17 740 78,162 79,540 87 1259 103 2 207,21 208,904 16 737 77,432 79,795 87 1255 4 199,835 208,142 17 737 77,670 79,235 86 1259 104 3 206,22 208,147 15 737 77,942 79,606 90 1255 5 201,593 208,124 17 741 78,049 80,066 91 1260 105 5 186,04 207,846 15 735 76,605 79,316 90 1255 6 204.273 208.037 16 740 77.552 79.611 93 1260 106 1 189.08 208,312 15 738 77,946 79,958 87 1256 7 197,510 207,870 17 740 77,503 79,499 98 1261 107 6 190,88 208,378 15 740 78,673 80,225 87 1257 8 197,881 208,060 18 741 77,619 79,551 88 1262 108 5 194,53 208,529 15 738 76,665 79,706 1258 9 86 198,237 109 208,078 14 742 78,214 79,852 1262 86 2 194.81 209.026 15 739 77,506 79,869 86 1258 10 204,606 208,684 17 743 78,832 80,143 90 1263 110 8 204,71 208.763 15 741 78,318 79,779 91 1259 11 203,376 208,324 17 742 78,395 79,980 93 1263 111 9 194,63 741 77,999 79,548 1259 208,219 15 87 12 204,775 208,285 17 243 76,926 79,384 88 1265 112 8 198,42 208,439 15 740 77,587 79,643 90 1260 13 1266 113 201,441 17 77,383 79,522 92 208,470 742 5 740 78,166 79,409 1260 206,45 208,284 15 89 14 206,619 208,395 17 753 78,639 79,936 91 1281 114 5 194,23 208,155 15 740 77,924 79,802 89 1261 15 202,036 207,995 18 747 77,642 79,995 90 1266 115 0 198,33 208,460 15 742 77,596 79,600 87 1262 16 200.482 208.027 18 744 77,800 79,529 91 1267 116 4 742 77,592 195,60 208,850 15 79,951 86 1263 17 206,804 79,793 1268 117 208.619 16 745 77,803 89 9 15 742 77,800 79,719 208,230 88 1263 196,86 18 206,301 208,262 17 743 77,803 79,471 1268 118 88 2 199.92 208,452 15 740 77,208 79,330 88 1263 19 206,920 280,591 17 745 78,279 80,224 90 1268 119 6 198,28 208,451 15 740 76,758 79,280 88 1263 20 198,153 208.375 17 744 78,162 79,573 90 1270 120 3 199,74 740 76,775 79,323 208,447 15 1264 86 21 17 194,456 208,298 747 78,395 80,106 91 1270 121 1 202,03 208,035 14 744 78,144 79,729 88 1265 22 204,635 208,010 17 749 78,572 80,148 92 1272 122 4 198,82 208,617 15 744 77,622 79,781 90 1266 23 202,578 17 77,707 89 1272 123 208,618 746 79,696 1 77,342 79,527 184,50 208,662 14 743 91 1265 24 206.026 208.012 18 91 1273 124 747 78,035 79,461 5 742 77,900 79,557 193.54 208,622 15 91 1266 25 203,593 125 208,703 16 750 78,560 80,061 92 1273 3 194,86 208,300 14 743 77,886 79,840 88 1266 26 207,140 208,789 18 748 78,875 80,088 92 1273 126 4 208,19 208,191 15 743 77,511 79,657 91 1266 27 195,525 208,325 17 747 77,626 79,244 91 1274 127 0 77,190 79,316 195.36 207.781 15 744 87 1267 28 189,827 207,162 17 739 77,786 79,551 87 1257 128 0 196,26 208,135 15 745 77,678 79,772 87 1246 29 175,199 205,372 17 732 76,371 78,007 87 1250 129 0 196,31 207,955 14 744 76,874 79,145 89 1268 30 182,765 16 79,717 1248 207,687 733 77,658 87 130 1 201,13 208,232 15 745 77,996 80,013 87 1267 31 131 191,759 207,875 18 734 77,685 79,786 85 1247 3 744 197,72 208,156 15 77,305 79,406 90 1268 32 201,148 207,212 18 736 77,536 79,935 91 1247 132 1 197,46 208,899 14 743 77,234 79,260 92 1268 33 201,976 208,551 18 731 78,094 79,679 88 1247 133 8

TABLE 1.¹³⁷Cs spectrum

34	106 406	200 226	10	72.4	76.022	70.400	0.0	1240	124	192,63	208,356	14	745	78,595	79,852	92	1269
35	196,406	208,326	18	/34	76,932	79,482	88	1248	134	0	208.413	15	744	77.196	79,477	91	1268
36	203,395	206,806	18	/34	//,/38	/9,689	88	1247	135	7	208,199	14	746	77,964	80,103	86	1269
30	204,960	208,930	18	733		80,130	90	1248	136	6 198,50	208,936	14	745	78.240	79,636	91	1269
29	200,220	208,332	18	732	78,078	79,687	88	1248	137	1	207.971	15	745	76,995	79.453	86	1269
38	196,099	208,295	18	734	77,957	79,592	93	1249	138	0	207,971	15	745	78 372	79 908	90	1269
39	196,408	208,442	16	733	77,747	79,977	92	1249	139	1	200,501	15	743	76.075	78.070	84	1207
40	201,860	207,807	18	736	78,021	79,840	86	1250	140	3	207,518	15	745	70,975	70,979	04	1209
41	202,638	208,600	18	735	78,043	79,975	89	1250	141	197,49 7	209,150	15	/46	/8,029	/9,918	91	1270
42	199,666	208,517	18	737	77,508	80,055	86	1251	142	202,96 8	208,093	15	745	77,886	79,681	92	1270
43	198,852	208,703	19	733	76,968	79,375	90	1251	143	132,54 6	208,792	14	746	78,514	79,925	92	1270
44	203,787	207,829	19	735	77,629	79,292	90	1252	144	198,37 2	208,096	15	746	77,348	79,810	89	1270
le		Total Are(C/s)						le		Total Area	(C/s)			Photopeak	c (C/s)	
samp	Net	Cross	F.W. H.M	P.P	Net	Cross	F.W. H.M	P.P	samp	Net	Cross	F.W. H.M	P.P	Net	Cross	F.W. H.M	P.P
45	201,847	207,914	18	736	77,585	79,825	84	1251	145	199,57	208,074	16	747	77,824	79,883	88	1270
46	195,382	208,768	14	732	78,038	79,455	89	1251	146	203,41	208,307	15	745	77,604	79,453	89	1271
47	202,927	208,172	15	735	78,163	79,748	85	1252	147	176,23	195,879	17	746	77,310	79,800	91	1238
48	206,852	208,516	15	738	77,546	79,800	85	1253	148	204,63	207,869	18	731	77,010	79,269	89	1244
49	174,339	208,586	14	737	78,254	79,795	87	1254	149	197,82	207,755	17	729	77,735	79,542	87	1240
50	200,115	208,026	18	729	77,099	79,456	88	1243	150	199,53 1	207,620	17	729	77,573	79,475	88	1240
51	196,229	207,444	19	729	77,152	79,526	91	1242	151	200,71	208,091	17	730	77,152	79,472	82	1240
52	199,006	207,427	18	728	77,248	79,188	85	1241	152	196,37 8	208,280	17	730	77,905	79,916	88	1240
53	202,532	208,404	18	731	77,982	79,943	88	1241	153	196,37 8	208,280	17	730	78,064	79,768	88	1241
54	198,290	208,318	18	730	77,973	79,604	89	1241	154	199,94 0	207,845	17	731	77,619	79,822	87	1241
55	198,324	208,057	20	728	77,954	79,827	91	1241	155	203,95 5	207,729	17	729	76,606	79,424	90	1242
56	199,927	207,892	18	730	78,375	79,619	90	1241	156	204,27 9	207,756	18	728	77,602	79,463	92	1242
57	196,674	206,983	18	729	77,719	79,021	88	1242	157	204,47 2	270,809	16	731	77,509	79,631	90	1245
58	191,221	207,506	18	731	77,723	79,505	88	1242	158	204,15 8	207,875	17	731	77,305	79,522	78	1246
59	199,883	208,354	18	731	78,669	80,194	83	1242	159	202,02 0	208,096	17	731	77,626	79,723	90	1244
60	201,004	209,059	17	731	78,631	80,305	87	1242	160	192,08 9	206,985	17	734	76,755	79,087	85	1248
61	175,050	207,946	14	730	77,690	79,672	87	1242	161	203,00 9	207,876	17	733	77,616	79,360	85	1250
62	173,973	208,236	14	730	77,966	79,807	90	1243	162	197,86 4	208,104	16	734	77,337	79,718	91	1249
63	177,412	208,925	14	731	78,002	79,769	88	1243	163	204,60 5	208,641	15	746	77,270	79,701	91	1271
64	181,918	208,559	14	730	77,785	79,864	88	1243	164	198,44 8	208,360	16	734	77,660	79,717	88	1249
65	181,282	208,363	14	731	77,922	79,567	89	1244	165	202,44 3	208,311	15	747	77,640	79,377	88	1273
66	182,809	207,874	14	730	76,854	79,344	85	1245	166	200,84 1	208,912	16	747	77,957	79,910	91	1270
67	177,264	209,089	14	731	78,469	80,076	89	1245	167	203,03 8	208,967	16	746	77,841	80,055	86	1269

68	178,396	207,808	14	735	78,534	80,094	85	1246	168	204,49 9	208,558	16	747	78,482	80,032	91	1270
69	179,717	208,870	14	732	77,882	79,509	90	1247	169	205,72	208,968	17	746	77,572	79,976	89	1271
70	187,108	207,977	14	732	77,261	79,043	88	1247	170	204,34	207,998	17	746	77,252	79,233	91	1272
71	201,194	207,027	17	727	77,337	79,530	59	1235	171	206,35	208,199	16	748	77,564	79,590	92	1272
72	191,341	207,302	18	727	77,914	79,490	90	1235	172	196,27 1	207,786	16	747	77,564	79,476	87	1273
73	202,072	207,658	18	724	76,999	79,383	88	1234	173	207,60 8	207,609	15	747	77,125	79,502	91	1272
74	204,558	208,083	18	726	77,092	80,041	87	1234	174	200,11 8	207,943	16	746	77,087	79,091	87	1273
75	199,733	207,762	19	726	77,707	79,673	88	1234	175	201,13 1	208,668	16	748	77,866	79,982	86	1273
76	200,056	208,133	18	726	77,452	79,597	92	1235	176	204,58 5	208,390	16	748	77,115	79,437	90	1273
77	185,960	207,477	18	726	77,913	79,504	86	1235	177	198,46 6	208,599	16	748	77,530	79,744	89	1274
78	200,877	208,294	18	727	76,402	79,653	85	1236	178	197,49 5	208,530	16	747	77,723	79,479	91	1275
79	201,528	208,253	17	723	76,596	78,878	89	1236	179	198,64 1	208,767	17	747	77,068	79,805	90	1275
80	200,045	208,654	17	726	77,840	79,832	88	1235	180	202,15 3	208,832	16	751	78,564	80,311	89	1275
81	204,871	208,171	17	727	77,589	79,710	90	1236	181	201,01 2	208,917	16	749	77,939	79,736	88	1276
82	204,553	208,534	16	728	77,552	79,885	90	1238	182	206,00 0	207,939	16	749	77,884	79,523	92	1276
83	203,429	208,323	16	726	76,630	79,372	90	1238	183	201,31 0	208,363	16	750	77,911	79,784	92	1277
84	182,428	207,292	15	728	77,747	79,465	86	1238	184	204,29 7	208,345	17	748	77,688	79,435	89	1277
85	201,813	207,871	16	731	77,640	79,622	89	1241	185	200,60 3	208,639	17	751	77,558	79,719	90	1278
86	184,508	208,899	15	729	77,752	79,878	88	1241	186	207,26 9	209,067	17	751	78,023	79,998	90	1278
87	189,153	208,258	15	730	78,123	79,754	86	1242	187	204,20 8	207,575	17	749	77,740	79,433	91	1278
88	181,180	208,600	15	731	78,306	79,833	89	1243	188	202,35 4	208,199	17	751	77,382	79,431	91	1279
89	189,763	208,178	14	730	77,127	79,409	85	1244	189	206,05 2	207,893	16	752	77,551	79,784	94	1279
ple		Total Are(C/s)						ple	Total Area(C/s)			Photopeak (C/s)				
sam	Net	Cross	F.W. H.M	P.P	Net	Cross	F.W. H.M	P.P	sam	Net	Cross	F.W. H.M	P.P	Net	Cross	F.W. H.M	P.P
90	188,798	209,820	15	733	77,554	80,245	84	1245	190	205,04 2	208,646	17	752	77,943	80,059	89	1280
91	193,139	208,404	15	733	77,423	79,702	89	1245	191	197,97 9	207,988	17	745	77,501	79,848	91	1280
92	182,274	207,619	15	731	76,820	79,127	89	1246	192	201,39 2	207,392	17	753	77,606	79,518	89	1280
93	178,923	208,669	15	434	77,911	79,503	85	1251	193	205,41 1	207,396	17	753	78,033	79,551	89	1280
94	207,069	208,710	14	731	77,747	79,708	90	1247	194	201,84 9	207,847	17	752	77,390	79,461	92	1280
95	205,994	207,953	14	434	77,808	79,752	85	1248	195	203,80 8	208,786	17	751	77,850	79,702	91	1280
96	202,842	207,826	15	734	77,491	79,720	93	1248	196	199,29 7	208,163	16	753	77,972	79,646	86	1281
97	204,873	208,725	16	733	77,031	79,592	92	1249	197	204,57 9	208,594	17	752	77,056	79,514	88	1281
98	207,555	209,173	16	733	77,599	80,089	90	1250	198	206,24 5	208,153	18	751	77,464	79,313	91	1281
99	206,962	208,898	15	734	77,544	79,670	87	1251	199	205,65 3	207,645	15	752	77,463	79,417	90	1281
100		210.070	18	728	78 881	80,737	90	1239	200	207,17	208,886	17	755	77,574	79,350	90	1292

Table. 1 show the measurement of 200 spectra of the radioactive cesium source, where the table was divided into two parts (for the large size of the table), and the total area and the photopeak area of the cesium spectrum were calculated. This table was abbreviated in Table 2.

TABLE 2. Summary (CS) spectrum								
data	Total.Net	Area.Cro	Photo.Net	peak. Cro				
Min.	132546	195879	76371	78007				
1st Qu	195977	207933	77415	79474				
Median	199993	208271	77682	79664				
Mean	197869	208845	77680	79659				
3rd Qu	203792	208600	77965	79840				
Max.	208842	280591	78881	80737				
IQR	7815	667	550	336				
EX	197868.8	208844.5	77680.35	198238.5				
var	82986233	46688034	239283.5	94108.6				
sd	9109.678	6832.864	489.1662	306.7713				
X6.bar	198238.5	208830	77627.51	79634.13				

 TABLE 2.
 Summary (¹³⁷Cs) spectrum

Table .2 shows a summary of the Cesium spectrum areas, where the data refers to the studied work environment (samples), **Total.Net** refer to the net total area of the spectrum, Total, Area.Cro is Gross total spectrum, Photo.Net refer to the Net photopeak and peak. Cro refer to Gross photopeak spectrum. The table also shows the min (minimum) and Max(maximum) value For each sample, there is also IQR is the inter-quartile range which is the distance between the third quartile 3rd Qu an account and the first quarter 1st Qu of the data and EX refer to mean value, var is the variance and sd is the standard deviation.

STATISTICAL ANALYSIS

The Figures (3and 4) shows the statistical distributions on the studied environment samples, which is a histogram that shows the graphical relationship of the rate between the frequency of the sample and the mean of the spectrum. And the boxplot of Total Area of spectrum and Photopeak Area.

FIGURE 3. show the histogram between frequency and Area (Net & Cross).

A histogram has two axis, a horizontal axis represent total area and a vertical axis is represent the data (Frequency). By the notes of histogram, we can estimate the shape of the data, the center, and the spread of the data, also we note the x-axis dividing into equal intervals and the height of each box represents the count of the number of observations that fall within the interval of average.

FIGURE 4. boxplot of Total Area of spectrum and Photopeak Area.

Figure 4 presents individually studied data , The box chart was created five values: the minimum value, 1st Qu, the median, 3rd Qu, and the maximum value. Where about 50% of the data is collected inside the box, while the rest of the data is distributed between the upper and lower halves, i.e. between the highest and the lowest value.

Figures (5and 6) shows the statistical distributions on the studied random sample environment, which is a histogram that shows the relationship of the rate between the frequency of the sample and the standard mean of the spectrum. And the boxplot of Total Area of spectrum and Photopeak Area.

FIGURE 6. show the histogram between frequency and standard mean Area (Net & Gross).

A random sample consisting of 168 spectra was taken and a statistical analysis was performed on it, as shown in Table .1 and Figures 5 & 6, for the total area and photopeak area which are distinctly different from Figures 3 and 4, and the reason for this is our selection of the random sample to represent the population, and random sampling mean is considered a standard sample subject to normal distribution. Here, we find that the two lines are similar to the shape of a bell, unlike the Figures 3 and 4.

Compare The Mean Between The Total Net Area And Phot Net Area Mean Using The R Programming Language Using Shapiro.Test And T-Test.

Mean can be compared to two sets of data or two samples X, Y Independent using a t-test test based on this test is based on assumption that this data represents a community following normal distribution. As Figure (7,8,9and 10) where

X11<-pop.6\$Total.Net X21<-pop.6\$Photo.Net

FIGURE 7. The graphic shows that the data of X (or pho.Net) and the data for X bar standard are follow the normal distribution.

shapiro.test(X11)shapiro.test(X21)W = 0.78341, p-value = $6.401e^{-16}$ W = 0.98926, p-value = 0.1392For both groups p-value is greater than 0.05 and therefore the data can be said to follow the normal distributiont.test(X11,X21)p-value < $2.2e^{-16}$ Since p value is above the significance level of 0.05 and therefore the final decision has not changed using

Since p-value is above the significance level of 0.05 and therefore the final decision has not changed using both methods and two groups are right equal for the Mean.

Compare The Mean Between The Total Gross And Phot Cross Mean .

shapiro.test(Y21)

W = 0.96093, p-value = 2.498e⁻⁰⁵

where Y11<-pop.6\$Area.Cro , Y21<-pop.6\$peak.Cro

shapiro.test(Y11) W = 0.13617, p-value < 2.2e⁻¹⁶

FIGURE 8. The graphic shows that Total Gross area and the X.bar (mean standard) are follow the normal distribution.

For both groups p-value are greater than 0.05 and therefore the data can be said to follow the normal distribution. **t.test(Y11,Y21)**

p-value < 2.2e⁻¹⁶

Since p-value is above the significance level of 0.05 and therefore the final decision has not changed using both methods and two groups are right equal for the Mean.

Compare the mean between the Total Net mean and Total Net x.bar

FIGURE 9. The graphic shows that Total Net Area and the Total Net Area standard are follow the normal distribution.

For both groups p-value are greater than 0.05 and therefore the data can be said to follow the normal distribution. **t.test (X11,x11)**

p-value < 2.2e-16

Since p-value is above the significance level of 0.05 and therefore the final decision has not changed using both methods and two groups are right equal for the Mean.

For both groups **p-value** is greater than 0.05, therefore the data can be said to follow the normal distribution. **t.test(Y21,y11)**

p-value < 2.2e-16

Since p-value is above the significance level of 0.05 and therefore the final decision has not changed using both methods and two groups are right equal for the Mean.

Compare Between The Frequency (Samples) And Area Spectrum Using The Linear Regression

where, fit is the code name needed to draw a linear regression in R program, and fit1 is refer to relation between (sample \$Total.Net), as Figures (11,12,13 and 14).

fit1 <- sample \$Total.Net

FIGURE 11. Linear Regression between the samples and Total Net Area.

p value is **0.05638** this mean the relationship between the frequency of samples and the total area is a strong statistical relationship.

fit2<- (sample \$Area.Cro)

FIGURE 12. Linear regression between the samples and Total Cross Area.

p-value: **0.7006** the relationship between sampling frequency and the total spectrum area is statistically not firm.

fit3 <- (sample \$Photo.Net)

p-value: **0.076** is greater than 0.0.5 (Significance level), this mean the relationship between sampling frequency and the total spectrum area is statistically not firm. As the Figure 12.

FIGURE 13. Linear regression between the samples and photopeak Net.

fit4<- (sample/\$peak. Gro)

p-value: **0.2451** is greater than 0.0.5 (Significance level), this mean the relationship between sampling frequency and the total spectrum area is statistically not firm. As the Figure 13.

FIGURE 14. Linear regression between the samples and photopeak Gross.

CONCLUSIONS

In this paper we note through the use of statistical distributions (normal, exponential, binomial and the Poisson distribution the (random sampling mean) is follow to the normal distribution. so, there is a slight difference between the sample mean and the standard mean for the same samples using the same statistical distribution.

and by using linear regression test, we found that there is no strong statistical relationship between the studied random variables.

while by using T-test, we found that the studied samples (Total Net Area, Total Gross Area, Photopeak Net Area, Photopeak Gross Area) do not follow the normal distribution compared while the same random sampling standard that follow the normal distribution.

REFERENCES

- 1. Turner, J. E., Downing, D. J. and Bogard, J. S., "Statistical Methods in Radiation Physics", USA ,2012.
- 2. James E. M., "Physics for Radiation Protection", Third Edition, USA, 2013.
- 3. Tobias N. W., Antonino D. P., Helge V. K. and Ulrik I. U.," Experimental evidence of quantum radiation reaction in aligned crystals", NATURE COMMUNICATIONS, 9:795,2018.
- 4. Khalid H. H. Al-Attiyah & Ahmed M. Ali Al-Mehsenauy," Study the Normal Statistical Distribution to Spectrum Radioactive Elements by Used Scintillation Detector NaI(Tl) ", M.Sc., Dep. of Physics ,College of Science, University of Babylon.,2017.
- M. N. Nasrabadi and M. Sepiani, "Study Of Components And Statistical Reaction Mechanism In Simulation Of Nuclear Process For Optimized Production Of ⁶⁴Cu And ⁶⁷Ga Medical Radioisotopes Using TALYS, EMPIRE And LISE++ Nuclear Reaction And Evaporation Codes", AIP Conference Proceedings 1653, 2015.
- 6. R. I. Bakin, A. M. Shvedov, and A. V. Shikin, "Computational Errors in The Calculation of Long Radioactive Decay Chains" Atomic Energy, Vol. 123, (6), p.406-411, 2018.
- M. Beard, E. Uberseder, and M. Wiescher, "Statistical Model Calculations for (n,γ) Reactions", EPJ Web of Conferencess 93, 2015.
- 8. D. P. Kaur," Statistical model calculations for the decay of 48Ti + 136,140,142Ce systems", Nucl. Phys., Vol.62(3), p. 542-543, 2017.
- 9. Spectrum Techniques UCS-30_Manual "The Universal Computer Spectrometer", USA, 2010.
- 10. Gamma-Ray Spectroscopy Using NaI(Tl), Experiment 3, ORTEC, 2018.
- 11. P. V. Neti and R. W. Howell," Lognormal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of a-Particle Track Autoradiography ", The Journal of Nuclear Medicine, Vol. 49 (6),p.1009-1016, 2008.
- 12. A. Sitek, "Limitations of Poisson Statistics in Describing Radioactive Decay", Physica Medica , Vol. 31(8), 2015.
- 13. J. L. Perales, A. G-Mendoza, C. T.Llanzón and J. A. Pérez, "A software for automatic calculation of radioactive decay and dispensation of radiopharmaceuticals ", Annul Congress of the Association of Nuclear Medicine, 2009.
- 14. T. Kawano, P. Talou, and M. B. Chadwick, "Monte Carlo Simulation for Statistical Decay of Compound Nucleus", EPJ Web of Conferences, published by EDP Sciences, 2012.
- 15. S. M. Ahmed, R. Yahaya and S. Radiman, Clusterization Probability in Alpha-Decay ²¹²Po Nucleus Within Cluster –Formation Model; A New Approach ", Romanian Reports in Physics, Vol. 65, (4), P. 1281–1300, 2013.
- 16. Norman M.," Probability and Statistics for Data Science Math + R + Data", Taylor & Francis Group, LLC, USA, 2020.
- 17. Hadley W., "Advanced R", Second Edition, USA, 2019.
- 18. Pedro J. A.," Learn R As a Language", Taylor & Francis Group, LLC, USA, 2020.