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CIVIL & ENVIRONMENTAL ENGINEERING | RESEARCH ARTICLE

Development of a grau model for simulating 
cephalexin residue removal from wastewater by 
using lemna minor
Saif S. Alquzweeni1, Hussien A. M. Al-Zubaidi2*, Isra’a S. Samaka2 and Aqeel R. Albahadily3

Abstract:  Removal of cephalexin residues from wastewater is one of the most 
concerned issues in treatment plants due to the growing of the antibiotics con-
sumption level around the world. In this study, the impact of the initial concentra-
tion of cephalexin residues on its removability by lemna minor was investigated by 
developing a grau model accounting for the cephalexin initial pH value. In the 
model, the second-order kinetic constants of adsorption were linked linearly with 
the influent pH values. Results showed that using lemna minor along with phytor-
emediation process increased the removal efficiency value to 86.5% and dropped 
chemical oxygen demand (COD) to 0.012 mg/L in effluent, making the removability 
of cephalexin from the polluted water easier. In addition, it was found that chan-
ging the grau model kinetic constants linearly (positively or negatively) with pH 
affects the removal efficiency. Based on the results, the best removability can be 
noticed at the pH level of 7 with a value of 71%.
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1. Introduction
Cephalexin is antibiotics that are therapeutic organic compounds produced by particular micro-
organisms as secondary metabolites or generated in artificial or semi-artificial ways (Diyanati 
et al., 2013; Phillips, 2003). Antibiotics exert antibacterial activity by altering the basic metabolic 
bacterial paths (Alquzweeni & Alkizwini, 2020; Girardi et al., 2011). These antibiotics are commonly 
used in human drugs to prevent the bacterial disease, in the agricultural field to fight the 
pathogens, and in the veterinary industry and in aquaculture to control of pathogenic agents. 
Antibiotics, however, are also applied to promote growth (Dyanati-Tilaki et al., 2013; Naji et al., 
2020a; Nunes et al., 2019). The wide use of medical products has contributed in increasing their 
concentrations in the ecosystem. Low levels of these compounds existed, but nowadays they are 
widespread in the aquatic environments particularly. Typically, these compounds reach the envir-
onment by releasing them from prescription drugs in feces and urine. Eventually, cephalexin 
residues enter wastewater with or without treatment (Balarak & Mostafapour, 2016; Nunes 
et al., 2019). In certain countries, wastewater, which contains cephalexin metabolic waste is 
processed at wastewater treatment facilities since the residues could be removed by absorption 
in the sludge treatment (Faisal et al., 2020f; Naji et al., 2020a; Rahi et al., 2020; Saad et al., 2019). 
However, in the absence of remediation procedures or when the treatment is not efficient, these 
cephalexin residues are accumulated directly into water bodies (Alshammari et al., 2020; 
Karthikeyan & Meyer, 2006).

The incomplete removal of pollutants in wastewater is an issue (Alkizwini, 2021; Pawęska et al., 
2017). This downside poses a potential danger to aquatic species that live in water bodies. Many 
wastewater treatment technology, including coagulation, floatation, oxidation, chemical treat-
ment, photochemical degradation, and microbial treatment have been developed to solve such 
an issue by eliminating antibiotics from habitats (Ahmed et al., 2020b; Abd Ali et al., 2020; Mahvi 
et al., 2018; Naji et al., 2020c). The application of plants in this treatment has grown over the years 
in the biological remediation of pollutants. Many plant species with the ability to eliminate a wide 
range of environmental pollutants have been reported (Ahmed et al., 2020a; Naji et al., 2020c; Turk 
Sekulic et al., 2019).

Phytoremediation was suggested as an efficient, cheap, and eco-friendly method for sites with 
a accepted level of pollutant concentration (Alquzweeni et al., 2021; Türker & Yakar, 2017). Plants 
may engage directly in detoxification processes through the absorption of pollutants and posterior 
metabolizing or immobilizing inside the plant, or in an indirect way through the promoting of 
rhizospheric microorganisms, which are efficiently detoxified. Phytofiltration is one of those pro-
cesses. Mainly phytofiltration requires the use of floating, submerged or developed aquatic plants 
to extract contaminants from the solution, predominantly through their root system, while fronds 
are also engaged in a direct way (Alquzweeni et al., 2021; Olguín & Sánchez-Galván, 2012). 
Because of their action as “nutrient pumps”, this technique has a particular significance in the 
treatment of wastewater. Taking this role of phytoremediation into account, it can be argued that 
using aquatic macrophyte (e.g., lemna minor) in some remediation processes has great impor-
tance, particularly in the final step of tertiary treatment where fully purified wastewater is 
disposed into the environment. Ultimately, these plants that are utilized in phytoremediation 
processes could be either disposed to landfills or incinerated. In addition, the incineration process 
has been suggested as a method to downsize the plants and to produce the thermal energy 
(Moreira et al., 2020). Furthermore, plants can be applied in industries of ceramic, integrating the 
biomass applied in the remediation of ceramic blocks. The ability of plants such as lemna minor to 
absorb and metabolize significant quantities of pharmaceuticals under realistic conditions, similar 
to what happens in environment, has been reported and approved (J.-L. Zhao et al., 2010a; 
Murchie & Niyogi, 2011; Nunes et al., 2019; L. Zhao et al., 2010b). However, there is a lack of 
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toxicological studies that are evaluating the performance of plants at the biochemical level after 
the exposure to toxicants.

These photosystems have very effective light-harvesting processes, simultaneously preventing 
photosynthetic and photo-oxidative damage. This may occur during periods of intense light, and 
photosynthetic organisms develope different defensive mechanisms for adaption purposes (Faisal 
et al., 2020d; Jahns & Holzwarth, 2012). There are two primary paths for chloroplasts: (a) Electron 
transference to molecular oxygen, producing O2, H2O2, and OH (Halliwell, 2007); (b) Energy transfer 
from a triplet chlorophyll to molecular oxygen form, resulting in the production of the radical super-
oxide (Nunes et al., 2019). However, these processes could not be used to evaluate the risks on the 
environment because they do not accurately measure the toxic impacts of pollutant on the aquatic 
ecosystems (Zeng et al., 2009). Hence, toxicity and concentration of antibiotic need to be taken into 
account analytically to understand the quality of wastewater. This can lead to accurate indices to the 
toxic effects of wastewaters on the aquatic environments. Appropriate assessment methods must be 
used for determining the effectiveness of the applied wastewater treatment. In this regard, the 
effluent quality has been focused by monitoring the physical, chemical, and biochemical properties 
in addition to the identifying particular pollutants (Petrović et al., 2005). Therefore, this paper aims to 
investigate the toxicity of cephalexin on lemna minor for different cephalexin concentrations and pH 
level by developing a grau model to simulate the governing adsorption processes.

2. Materials and methods

2.1. The experimental work
Lemna minor was obtained from laboratorial cultures and kept under well-controlled conditions 
(temperatures 25 ± 2 °C). The cultures adaption to the new environment was performed by keeping 
the plant in a continuous lit place for 5 days to allow plant acclimatization to the conditions 
required by the approved test guidelines. The lemna minor was subsequently exposed to a set of 
three cephalexin concentrations for five days. Standard stock solutions were prepared by dissol-
ving 10 mg of cephalexin in water and storing in amber glass vials with a cap for a period of 7 days 
at 20 °C (Faisal et al., 2020b) and in a dark place. The chosen concentrations were 0.01, 0.05, 0.1, 
and 0.15 mg/L with a purity percentage of 99.7%. For the period of 6 weeks (Jun/1/2020 to 
September/15/2020), the operation phase was based on a constructed wetland (CW) as batch 
reactors for different concentrations. The batch tests were performed with a detention period 
equivalent to 5 days. Samples were collected and tested at the Ministry of Science and Technology, 
Iraq to determine cephalexin concentrations by using High-Performance Liquid Chromatography 
(HPLC) test (Argekar et al., 1997).

Furthermore, a Hach-Lang commercial kit (2,125,915-COD HR) was utilized to measure the COD 
in this study according to the technique 410.4 of US EPA (USEPA Iris, 1993) in addition to use 
a spectrophotometer (model HI-83,214) to measure the concentrations of COD (mg/L).

2.2. Kinetic modeling
The operation of the constructed wetland was very complex due to the occurrence of biological, 
chemical, and physical processes during the same time to eliminate the contaminants from 
wastewater. Thus, a unique mathematical representation of predominant processes was done to 
show the treatment method influence in improving the wetlands water quality. Although different 
models have been developed, the majority of CW designs remains is based on the researcher’s 
knowledge (DWA-A 262, 2006) or the simple first-order decay models. However, the first-order 
model is insufficient for designing constructed wetlands. Various models were utilized to design 
CW. Some models comprise first-order degradation kinetics, others forecast that the pollutant 
concentrations to be remediated will become zero when the detention time goes toward infinity, 
which is not always the case in CW.
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The kinetic model is considered a beneficial tool to understand the biological and basic trans-
ference mechanisms within the reactor. Constants that are calculated from the kinetic formula are 
named bio-kinetic coefficients or constants of growth (Kröger et al., 2007). These kinetic constants 
characterize and expect the system performance. Bio-kinetic constants are based on the condi-
tions of the environment and kind of microbial species such as temperature, pH, dissolved oxygen, 
substances of inhibition, nutrients, and organic matters decay in wastewater. Kinetic modelling 
has been utilized in a simple shape, and few variables are included for easy monitoring and 
applying in industrial purposes and for simple defining the coefficients of kinetic. The literature 
showed several mathematical models that define the processes occurred with systems identical to 
CW, such as the first-order model, the grau second-order model, Sundstrom model, the Stover- 
Kincannon model, the Chen model, the Contois model, and the Michaelis-Menten type kinetic 
model (Basibuyuk & Kalat, 2004). The grau second-order model was applied in this study to 
simulate the removability of antibiotic at different conditions.

The grau model has a second-order kinetic reaction, which can be expressed as follows: (Andreo- 
Martínez et al., 2016; Giraldi & Iannelli, 2009): 

Si � HRT
Si � Se

¼ aþ b� HRT (1) 

Where Si is the influent contaminants concentrations (mg/L), Se represents the effluent contami-
nants concentrations (mg/L), a ¼ Si

k2X (X is the concentrations of the biomasses in the reactor; and 
k2 is the second-order contaminant removal rate constant (per day), and b is a constant greater 
than one.

This equation was simplified to become: 

Se ¼ Si 1 �
1

bþ a
HRT

� �

(2) 

The kinetic constants (a) and (b) were calculated by fitting Eq. 2 with the experimental measure-
ments using s nonlinear regression. Statistical analysis was performed by using the one-way analysis 
of variance (ANOVA), and the differences between the measured and the predicted values were 
evaluated by using the t-test with an acceptable significance level (P-value of less than 0.05) (Al- 
Zubaidi et al., 2021).

Figure 1. Effects of initial pH on 
the removability of cephalexin.
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To incorporate the influent pH effect, the kinetic constants will be plotted against pH to display 
the constants as a function of pH level. Eventually, Eq. (2) can be expressed in terms of pH level.

3. Results and discussion

3.1. Modeling pH effects on the grau model
Figure 1 shows the experiment results that were determined at pH values from 3 to 10. Each set of 
results was correlated with pH values fitted to the grau model (Eq. (2)), and the constants were 
predicted by nonlinear regression in SPSS Statistics version 20 (Table 1). Clearly, the values of a and 
b change with the initial pH of the influent solutions.

To clarify the relationship between the constants (a and b) and the pH values, the constants 
were fitted with pH values as shown in Figure 2. The values of a and b reveal a linear relationship 
as the pH level increases toward a value of 7. After that, the constants increase a linearly with the 
pH level. Because of the protonations and deprotonations of the acidic and alkaline groups of the 
root, cephalexin adsorptions behavior is affected by the value of pH that in turn influenced the 
surface structures of the root. This can be attributed to the presence of various cephalexin species 
at various values of pH. Cephalexin is a zwitterionic molecule with pKa values of 2.56 and 6.88 
(Legnoverde et al., 2013; Naji et al., 2020a) . It was found that a charge of anion was existed on 
cephalexin at a pH value of 6.88 and above, while at pH values below 2.56, a charge of cation was 
existed as zwitterion species between both pKa values. Hence, the electrostatic attraction between 
cephalexin, and the surface of the root is preferable at the pH values. This indicated that the 
growth or reduction in the pH values from its best value (7) lead to a decrease in the values of 
a and b for surface sites. This may occur because of the competition between the protons and 
cations to uptake the binding sites when pH values are low. These linear relationships result in the 
following general linear models: 

a ¼ γ1 þ γ2pH (3)  

Table 1. Values of kinetic constants (a) and (b) as a function with the initial pH of the feed 
solution
pH value Constant Value
3 a 0.458

b 2.426

R2 0.936

5 a 0.105

b 1.615

R2 0.946

7 a 0.039

b 1.368

R2 0.938

8 a 0.069

b 1.492

R2 0.901

10 a 0.067

b 1.788

R2 0.939
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b ¼ γ3 þ γ4pH (4)  

Where Ɣ1,Ɣ2,Ɣ3 and, Ɣ4 are constants in which the linear relationship is negative for the pH values 
of less than 7 and positive for the pH values of greater than 7.

Substituting Eq. (3) and (4) in Eq. (2) yields: 

Se ¼ Si 1 �
1

γ3 þ γ4pHþ γ1þγ2pH
HRT

 !

(5) 

Equation (5) is a wide applicable formula that could be utilized to express the initial concentration 
variation at various pH values, see Figure 3.

Figure 2. Effects of initial pH 
value on the constants (a and 
b) predicted by the grau model 
for cephalexin removability 
(Standard Deviation = 0.1).
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3.2. Cephalexin initial concentration effect
The removal efficiencies based on different initial concentrations (0.01, 0.05, 0.1, and 0.15) mg/L 
and detention periods (1–5) day in the lemna minor CW are shown in Figure 4 to 7. For initial 
concentration of 0.01 mg/L, the removal efficiency values were 84.66, 85.36, 85.76, 85.96, and 
86.46 (Jun/2020) and 71.16, 71.96, 72.36, 72.46, and 72.96 (July/2020) for the last period during 
the detention periods. These values decreased as the initial concentration increases from 0.05 to 
0.15 mg/L. For instance, the removal efficiency decreased from 86.46 (corresponding to initial 
concentration of 0.01 and detention period of 5 days on Jun) to 61.16 (corresponding to initial 
concentration of 0.15 and detention period of 5 days on the same month). Similar behavior exists 
during the other months. The results indicated that the content of the cephalexin medium 

Figure 3. Removal efficiencies 
of cephalexin with different pH 
values and initial concentration 
of 0.01 mg/L in the CW.

Figure 4. Removal efficiencies 
of cephalexin with a constant 
initial concentration of 
0.01 mg/L in the CW.
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continues to increase in the plant. High dosages of cephalexin in duckweed reduce the probability 
of forming the metabolites (starch, protein, polypeptices, etc.), which can lead to excessive 
amounts of biomass in such installations. A few previous studies reported physiological changes 
and restraining paths of enzymes in plants that are subjected to high cephalexin concentration, 
indicating to the adverse effect of high cephalexin content on the plant functionality 
(Białk-Bielińska et al., 2018). Thus, the content in the duckweed-depended phytoremediation 
system has to be optimized for the best operation efficiency (Faisal et al., 2020a; Verma & 
Suthar, 2015). In addition, the results confirmed that the presence of lemna minor would increase 
the reduction of cephalexin by adopting suitable initial concentrations since lemna minor will 
provide the required environment for phytoremediation growth within the root zone and other 
parts of lemna minor (Kouki et al., 2009). Light-harvesting and energy transfer in the plant, the 
photosystem is responsible for the active core (Baker, 2008; Faisal et al., 2020c).

Figure 5. Removal efficiencies 
of cephalexin with a constant 
initial concentration of 
0.05 mg/L in the CW.

Figure 6. Removal efficiencies 
of cephalexin with a constant 
initial concentration of 0.1 mg/ 
L in the CW.
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In plants, radical superoxide (O−2) is naturally generated during photosynthesis in chloroplasts, 
especially when plants develop under conditions of environmental stress. This prevents the photo-
synthetic processes and leads to absorb the light excessively (Faisal et al., 2020e; Nunes et al., 
2019). Cephalexin can interact with the chain of electron transport, resulting in the production of 
oxidized chlorophyll triplets that directly transmit the energy to the oxygen molecules, which in 
turn have a double impact on the plant cells, oxidizing the biomolecules including lipids (structural 
components of the cellular membrane) (Faisal & Naji, 2019; Ramel et al., 2012). However, it can 
ultimately impact the normal physiological properties of plants. Catalase is the primary enzyme 
that degrades the hydrogen peroxide, and it protects the organisms from the deleterious impacts 
of oxidation that can be caused by chemicals (Nunes et al., 2015). The permanent activity of 
catalase in cells makes it able to prevent the damages of H2O2 during the natural aerobic process, 
which is one of the physiological functions of cells. However, the amounts of hydrogen peroxide 
may grow due to the presence of oxidative stress (following the metabolism process of some 

Figure 8. Catalase activities of 
lemna minor plants subjected 
to effluents and Steinberg’s 
solution (control) for a period of 
five days.

Figure 7. Removal efficiencies 
of cephalexin with a constant 
initial concentration of 
0.15 mg/L in the CW.

Alquzweeni et al., Cogent Engineering (2021), 8: 1963180                                                                                                                                               
https://doi.org/10.1080/23311916.2021.1963180

Page 10 of 16



chemical compounds). H2O2 growth is directly followed by increasing activities of catalase, that is 
considered as a physiological reparation during the conditions of oxidative stresses (Nunes et al., 
2019). Gomes et al. (2017) revealed that when lemna minor plant was subjected to ciprofloxacin 
concentration equals to 0.75 mg/ L for a week, it showed remarkable growth in the concentration 
of peroxide and activity of catalase.

3.3. Catalase determination (CAT)
Due to the Catalase importance in preventing the oxidative damages which occur because of the 
accumulating species of reactive oxygen, catalase determination (CAT) has been selected as 
a biochemical marker enzyme. Catalase could compromise the physiological properties of plant 
(Gill & Tuteja, 2010). A 96-well microplate was used for determining the activity of CAT. The 
previously described microplate reader was employed to perform spectrophotometric readings. 
Basing on the rate of degradation of the substrate H2O2, the activity was quantified and monitored 
at 240 nm for 5 minutes. The outcomes have been represented based on the consideration of the 
activity of CAT equivalents to the degraded amounts of hydrogen peroxide per minute per milli-
gram of proteins. Proteins quantity was determined using the Bradford technique at 595 nm 
(Bradford, 1976), adapted to micro-plate with bovine γ-globulin as a standard, for representing 
the enzymatic activity per milligram of proteins on the analyzed sample.

Figure 8 shows the Catalase activities of lemna minor subjected to effluents and Steinberg’s 
solution (control) for a period of 5 days. The determined quantities of CAT activity were equal to 
the lemna minor used plants in phytoremediation process. It was clear that the enzymatic activity 
of the plants diminished noticeably before and after the remediation process (p < 0.05). The 
occurrence of chemicals and the chemical exposing of biota may result in an environmental stress 
as the metabolism of these chemicals produces oxygen derivatives with high instability named 
reactive oxygen species (ROS). When these species accumulate in the plants’ cells, it results in 
serious oxidative damage, which inhibits the growing and yielding of the plants (Caverzan et al., 
2016), and for shielding purposes against the harmful influence of ROS, the plant develops 
antioxidant mechanism (Racchi, 2013). One of the most important strategies to avoid the oxidative 
damage is to enhance the CAT activity, an enzyme which effectively induces the transfer of H2O2 to 
water and oxygen (Valko et al., 2006). Based on the present results, the activity of this enzyme 
declines when the exposure occurs after the remediation process, establishing the pro-oxidative 

Figure 9. COD levels before and 
after the phytoremediation 
process (p-value < 0.05).
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scenarios. These patterns have been highlighted in many studies (de Alkimin et al., 2020). Singh 
et al. (2008) demonstrated that the activities of CAT grew in lemna minor when it was subjected to 
various concentrations of industrial effluents, which are highly loaded with metals for a period of 7 
days. Radić et al. (2010) noticed that after subjecting lemna minor to industrial effluents for 
a week, the amounts of peroxidase activity (POD) grew significantly and an engagement was 
observed between the plant defense mechanisms and its enzymatic forms. In general, there is 
a possibility to activate the antioxidant defense mechanism of plant which is connected to 
oxidative stress that happens after the subjecting process to effluents of industry; nevertheless, 
the patterns of species response relay on their permissibility levels, pollutants concentration, and 
the stage of the plant growth (Gill & Tuteja, 2010).

3.4. Chemical oxygen demand (COD) role
Figure 9 shows COD values before and after the treatment compared to controls. it can be noticed 
that COD concentrations in controls were almost equal to 0.05 mg/L, while higher concentrations 
can be observed in the raw effluent. On the other hand, COD in effluent dropped to 0.012 mg/L 
generally after the phytoremediation process. Lemna minor is capable of reducing the organic 
matter load in effluent remarkably. This reduction was very significant because the COD level in the 
effluent of post-treatment was the same COD level in the control treatment. Additionally, both 
effluents before the phytoremediation process have small concentrations of COD, and therefore 
they would not need further remediation. Regarding this, it is crucial to emphasize that the 
remediation using lemna minor could diminish these concentrations even further, and this is 
a phytoremediation process advantage since these remediated effluents will reduce the detri-
mental impacts on the environment after discharging process. For the untreated forms, organic 
wastes are mineralized after discharging to the surface water and produce nutritive elements that 
induce plants growth, resulting in the eutrophication phenomena (Kanu & Achie, 2011).

This excess formation of organic content results in the formation of “sludge”, and the dissolved 
oxygen is consumed from the water due to the mineralization process, which is the main cause for 
fish death (Kanu & Achie, 2011). Therefore, lemna minor can be considered as a highly effective 
plant that could be applied in phytoremediation to enhance the quality of effluents of the tertiary 
treatment and to obtain further purification since a significant decrease of COD concentration was 
attended as shown in Figure 9. Additionally, it is important to clear that the decrease of COD 
concentration by the remediation was high, where efficiencies of removability were about 75%. 
These variances can be attributed to the nature of the organic matters that are found in each 
effluent, which is a vital parameter for the degradation. The impacts of cephalexin toxicity on the 
aquatic environment are attributed to many factors; such as, it lasts in the environment for 
prolonged periods since it accumulates in biota and in sediments, pollutants decay into mutagenic 
compounds, and lack of aerobic biodegradation.

4. Conclusions
Treatment of cephalexin residue in wetlands using the typical approaches has a limited influence on 
the residue removal efficiency. In this study, a grau model was developed for simulating the pH impact 
of cephalexin wastes on the removal efficiency by using lemna minor. Lemna minor was manufactured 
in lab to be used for cephalexin removal. By simulating the model, the second-order kinetic constants 
of adsorption were linked to pH values of the wastes influent, highlighting the relationship between 
them. The model explained the complicated processes and the essential mechanisms of transforma-
tion, degradation, and mineralization of cephalexin residue by using lemna minor. Results showed that 
positive linear relationship exists between grau model kinetic constants and the pH level of the 
cephalexin initial concentration when the pH values are greater than 7, and the relationship becomes 
negative when the pH values are less than 7. Based on the model results, the cephalexin removal 
efficiency can be improved by varying the initial concentration of cephalexin in the wastes. In addition, 
lemna minor helps decrease COD level in the effluent significantly.
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